Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Cell Infect Microbiol ; 12: 898477, 2022.
Article in English | MEDLINE | ID: covidwho-20235279

ABSTRACT

A fatal case of COVID-19-associated mucormycosis (CAM) affected a 40-year-old woman who was initially admitted to our hospital due to a SARS-CoV-2 infection. Her clinical condition worsened, and she finally died because of respiratory failure, hemodynamic instability, and mucormycosis with invasion into the orbit and probably the brain. According to DNA sequence analysis of the fungus isolated from the patient, Apophysomyces variabilis was involved. This is the first published case of CAM and the third case of mucormycosis due to this mold.


Subject(s)
COVID-19 , Mucorales , Mucormycosis , Humans , Female , Adult , Mucormycosis/complications , Mucormycosis/diagnosis , Mucormycosis/drug therapy , COVID-19/complications , SARS-CoV-2 , Mucorales/genetics , Antifungal Agents/therapeutic use
2.
Int J Mol Sci ; 23(7)2022 Mar 22.
Article in English | MEDLINE | ID: covidwho-2216277

ABSTRACT

The study of the Mucoralean fungi physiology is a neglected field that the lack of effective genetic tools has hampered in the past. However, the emerging fungal infection caused by these fungi, known as mucormycosis, has prompted many researchers to study the pathogenic potential of Mucorales. The main reasons for this current attraction to study mucormycosis are its high lethality, the lack of effective antifungal drugs, and its recent increased incidence. The most contemporary example of the emergence character of mucormycosis is the epidemics declared in several Asian countries as a direct consequence of the COVID-19 pandemic. Fortunately, this pressure to understand mucormycosis and develop new treatment strategies has encouraged the blossoming of new genetic techniques and methodologies. This review describes the history of genetic manipulation in Mucorales, highlighting the development of methods and how they allowed the main genetic studies in these fungi. Moreover, we have emphasized the recent development of new genetic models to study mucormycosis, a landmark in the field that will configure future research related to this disease.


Subject(s)
COVID-19 , Mucorales , Mucormycosis , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , COVID-19/genetics , Genetic Techniques , Humans , Mucorales/genetics , Mucormycosis/drug therapy , Mucormycosis/epidemiology , Mucormycosis/genetics , Pandemics
3.
J Clin Microbiol ; 61(1): e0140922, 2023 01 26.
Article in English | MEDLINE | ID: covidwho-2193443

ABSTRACT

There has been significant increase in the use of molecular tools for the diagnosis of invasive aspergillosis (IA) and mucormycosis. However, their range of detection may be too limited as species diversity and coinfections are increasing. Here, we aimed to evaluate a molecular workflow based on a new multiplex PCR assay detecting the whole Aspergillus genus and the Mucorales order followed by a species-specific PCR or a DNA-sequencing approach for IA and/or mucormycosis diagnosis and species identification on serum. Performances of the MycoGENIE Aspergillus spp./Mucorales spp. duplex PCR kit were analyzed on a broad range of fungal strains and on sera from high-risk patients prospectively over a 12-month period. The kit allowed the detection of nine Aspergillus species and 10 Mucorales (eight genera) strains assessed. No cross-reactions between the two targets were observed. Sera from 744 patients were prospectively analyzed, including 35 IA, 16 mucormycosis, and four coinfections. Sensitivity varies from 85.7% (18/21) in probable/proven IA to 28.6% (4/14) in COVID-19-associated pulmonary aspergillosis. PCR-positive samples corresponded to 21 A. fumigatus, one A. flavus, and one A. nidulans infections. All the disseminated mucormycosis were positive in serum (14/14), including the four Aspergillus coinfections, but sensitivity fell to 33.3% (2/6) in localized forms. DNA sequencing allowed Mucorales identification in serum in 15 patients. Remarkably, the most frequent species identified was Rhizomucor pusillus (eight cases), whereas it is barely found in fungal culture. This molecular workflow is a promising approach to improve IA and mucormycosis diagnosis and epidemiology.


Subject(s)
Aspergillosis , COVID-19 , Coinfection , Invasive Fungal Infections , Mucorales , Mucormycosis , Humans , Mucormycosis/diagnosis , Mucormycosis/microbiology , Multiplex Polymerase Chain Reaction , Coinfection/diagnosis , Workflow , Aspergillosis/diagnosis , Mucorales/genetics , Invasive Fungal Infections/diagnosis , Aspergillus/genetics , Sequence Analysis, DNA , DNA , DNA, Fungal , COVID-19 Testing
4.
Front Cell Infect Microbiol ; 12: 953750, 2022.
Article in English | MEDLINE | ID: covidwho-2198702

ABSTRACT

Introduction: Recently, India witnessed an unprecedented surge of coronavirus disease 2019 (COVID-19)-associated mucormycosis (CAM) cases. In addition to patient management issues, environmental Mucorales contamination possibly contributed to the outbreak. A recent study evaluated environment contamination by Mucorales in the hospital setting. However, a considerable number of CAM patients were never admitted to a hospital before the development of the disease. The present study, therefore, planned to evaluate Mucorales contamination of patients' residences. Methods: The residential environment of 25 patients with CAM living in north India was surveyed. Air samples were collected from indoor and immediate outdoor vicinity of the patients' residence and cultured on Dichloran Rose-Bengal Chloramphenicol (DRBC) agar with benomyl for selective isolation of Mucorales. Surface swab samples were also collected from the air coolers fitted in those residences and cultured on DRBC agar. The isolates were identified by phenotypic and genotypic methods. Amplified fragment length polymorphism (AFLP) was employed to evaluate the genetic relatedness of the environmental and patients' clinical isolates. Results: The median spore count (mean ± SD, cfu/m3) of Mucorales in the air of patients' bedrooms was significantly higher than in the air in other rooms in those residences (3.55 versus 1.5, p = 0.003) or the air collected directly from the front of the air cooler (p < 0.0001). The Mucorales spore count in the environment did not correlate with either ventilation of the room or hygiene level of the patients' residences. Rhizopus arrhizus was isolated from the environment of all patients' residences (n = 25); other Mucorales species isolated were Cunninghamella bertholletiae (n = 14), Rhizopus microsporus (n = 6), Rhizopus delemar (n = 6), Syncephalastrum racemosum (n = 1), Lichtheimia corymbifera (n = 1), and Mucor racemosus (n = 1). Genetic relatedness was observed between 11 environmental isolates from the patients' bedrooms and respective clinical isolates from patients. Discussion: The study supported the view that the patients might have acquired Mucorales from the home environment during the post-COVID-19 convalescence period. Universal masking at home during patients' convalescence period and environmental decontamination could minimize exposure in those susceptible patients.


Subject(s)
COVID-19 , Mucorales , Mucormycosis , Agar , Amplified Fragment Length Polymorphism Analysis , Benomyl , Chloramphenicol , Convalescence , Humans , Mucorales/genetics , Mucormycosis/epidemiology
5.
Front Cell Infect Microbiol ; 12: 850581, 2022.
Article in English | MEDLINE | ID: covidwho-1742206

ABSTRACT

Mucormycosis is an emerging infection caused by fungi of the order Mucorales that has recently gained public relevance due to the high incidence among COVID-19 patients in some countries. The reduced knowledge about Mucorales pathogenesis is due, in large part, to the historically low interest for these fungi fostered by their reluctance to be genetically manipulated. The recent introduction of more tractable genetic models together with an increasing number of available whole genome sequences and genomic analyses have improved our understanding of Mucorales biology and mucormycosis in the last ten years. This review summarizes the most significant advances in diagnosis, understanding of the innate and acquired resistance to antifungals, identification of new virulence factors and molecular mechanisms involved in the infection. The increased awareness about the disease and the recent successful genetic manipulation of previous intractable fungal models using CRISPR-Cas9 technology are expected to fuel the characterization of Mucorales pathogenesis, facilitating the development of effective treatments to fight this deadly infection.


Subject(s)
COVID-19 , Mucorales , Mucormycosis , Antifungal Agents/therapeutic use , Genomics , Humans , Mucorales/genetics , Mucormycosis/diagnosis , Mucormycosis/microbiology , Mucormycosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL